2-1. a) Consider a 100 g sample of polymer and convert \% composition to mole composition.

Mol m- $\mathrm{H}_{2} \mathrm{~N} \Phi \mathrm{NH}_{2}=39.31 \mathrm{~g} / 108.12 \mathrm{gmol}^{-1}=0.3636$
$\mathrm{Molp}-\mathrm{HO}_{2} \mathrm{C} Ф \mathrm{CO}_{2} \mathrm{H}=59.81 / 166.14=0.3600$
$\mathrm{Mol} \Phi \mathrm{CO}_{2} \mathrm{H}=0.88 / 122.13=0.007206$
The repeat unit is:

$\mathrm{M}_{0}=$ one half of repeat unit $=238.22 / 2=119.11$
$X_{n}=24,116 / 119.11=202.47$
$\mathrm{r}=\mathrm{N}_{\mathrm{A}} /\left(\mathrm{N}_{\mathrm{B}}+2 \mathrm{~N}_{\mathrm{B}^{\prime}}\right)=0.7272 /(0.7200+0.014412)=0.99018$
$\mathrm{X}_{\mathrm{n}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{rp})$
$202.47=(1+0.99018) /[1+0.99018-2(0.99018) \mathrm{p}]$
$\mathrm{p}=0.9999996=1.000$
The formula of the polymer with $\mathrm{X}_{\mathrm{n}}=202.47$ is

b) For 0.014412 moles $\Phi \mathrm{CO}_{2} \mathrm{H}$:

$$
r=(0.7272) /(0.7200+0.028824)=0.9711
$$

$$
\mathrm{X}_{\mathrm{n}} \text { at } \mathrm{p}=1.00=(1+0.9711) /[1+0.9711-2(0.9711)(1)=68.20
$$

2-2. $\quad \mathrm{M}_{0}=$ one half of MW of $-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NHCO}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}=113$
$\mathrm{X}_{\mathrm{n}}=\mathrm{M}_{\mathrm{n}} / \mathrm{M}_{0}=15,000 / 113=132.7$
$\mathrm{X}_{\mathrm{n}}=(1+\mathrm{r}) /(1+\mathrm{r}-2 \mathrm{rp})$
For $\mathrm{p}=0.995, \mathrm{X}_{\mathrm{n}}=132.7$
$132.7=(1+r) /[1+r-2 r(0.995)]$
$r=0.995$
The polymerization is carried out with $\mathrm{COOH} / \mathrm{NH}_{2}$ or $\mathrm{NH}_{2} / \mathrm{COOH}=0.995$.
To calculate the identity of end groups, we need to calculate the number of unreacted COOH and NH_{2}. Consider the case of $\mathrm{COOH} / \mathrm{NH}_{2}=0.995$. The number of unreacted COOH groups is $0.995(1-\mathrm{p})$, which for $\mathrm{p}=0.995$ is 0.004975 . The number of unreacted NH_{2} groups is 0.004975 plus the excess of NH_{2} over COOH , i.e., $0.004975+0.005$ or 0.009975 . The ratio of unreacted groups $\mathrm{COOH} / \mathrm{NH}_{2}$ is $0.004975: 0.009975$ or 1:2. Two thirds of the end groups are NH_{2}, one third is COOH . Note that if the reaction were carried out to 100% conversion, the only end groups would be NH_{2}. If the conversion were less than $99.5 \%, \mathrm{NH}_{2}$ end groups would constitute less than two-thirds of all end groups.

For $M_{n}=19,000, X_{n}=168.1$
$r=0.998$
2-3. For $\mathrm{M}_{\mathrm{n}}=10,000, \mathrm{X}_{\mathrm{n}}=10,000 / 113=88.5$
$\left.\mathrm{r}=0.988=\mathrm{N}_{\mathrm{A}} /\left(\mathrm{N}_{\mathrm{B}}+2 \mathrm{~N}_{\mathrm{B}}\right)^{\prime}\right)$
Since $\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}}=1, \mathrm{~N}_{\mathrm{B}},=0.00607$
Therefore, use a molar ratio of 1:1:0.01214 of adipic acid:hexamethylene diamine:benzoic acid.

For $\mathrm{M}_{\mathrm{n}}=19,000, \mathrm{r}=0.995$
$\mathrm{N}_{\mathrm{A}}=\mathrm{N}_{\mathrm{B}}=1, \mathrm{~N}_{\mathrm{B}},=0.00251$
Use 1:1:0.00502 molar ratio of reactants

For $\mathrm{M}_{\mathrm{n}}=28,000, \mathrm{X}_{\mathrm{n}}=247.8$, one cacluates r to be greater than unity. This means that a degree of polymerization of 247.8 cannot be achieved for $\mathrm{p}=0.995$.

2-4. a) Consider 2 moles glycerol: 3 moles phthalic anhydride
Carothers: $\mathrm{f}_{\text {avg }}=\Sigma \mathrm{N}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} / \Sigma \mathrm{N}_{\mathrm{i}}=[2(3)+3(2)] / 5=2.40$
$\mathrm{p}_{\mathrm{c}}=2 / \mathrm{f}_{\text {avg }}=2 / 2.40=0.833$
b) 1.500 moles phthalic acid: 0.980 moles glycerol

Carothers: glycerol is not in excess
$\mathrm{f}_{\text {avg }}=2(0.980)(3) /(1.500+0.980)=2.369$
$\mathrm{p}_{\mathrm{c}}=2 / 2.369=0.844$
c) 1.500 phthalic anhydride:0.990 glycerol:0.002 ethylene glycol

Carothers:

$\mathrm{f}_{\text {avg }}=\left[2\left(\mathrm{~N}_{\mathrm{A}} \mathrm{f}_{\mathrm{A}}+\mathrm{N}_{\mathrm{C}} \mathrm{f}_{\mathrm{C}}\right) /\left(\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{C}}+\mathrm{N}_{\mathrm{B}}\right)=\right.$
$[2(0.002(2)+0.990(3))] /(0.002+0.990+1.500)=2.39$
$\mathrm{p}_{\mathrm{c}}=2 / 2.39=0.836$
d) 1.500 phthalic anhydride:0.500glycerol:0.700 ethylene glycol

Carothers:
$\mathrm{f}_{\text {avg }}=[2(0.700(2)+0.500(3))] /(0.700+0.500+1.500)=2.148$
$\mathrm{p}_{\mathrm{c}}=2 / 2.148=0.93$
2-5
a)

b)

\longrightarrow block copolymer

\longrightarrow random copolymer

2-6. React the prepolymers

2-7. $\quad \mathrm{M}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}} \times 104 \mathrm{gmol}^{-1}$ styrene $=1.52 \times 10^{4} \times 104 \mathrm{gmol}^{-1}$ styrene

$$
=1.58 \times 10^{6} \mathrm{gmol}^{-1}
$$

(203 counts $\mathrm{min}^{-1} / 3.22 \mathrm{~g}$) $/ 9.81 \times 10^{7}$ counts $\mathrm{mol}^{-1} \mathrm{~min}^{-1}=$ $6.43 \times 10^{-7} \mathrm{~mol}$ AIBN per 1 g polystyrene
$(1.0 \mathrm{~g}) / 1.58 \times 10^{6} \mathrm{gmol}^{-1}=6.33 * 10^{-7} \mathrm{~mol}$ polystyrene per 1 g polystyrene
This means that, within a precision of $1-2 \%$, there is one molecule of AIBN or two initiator fragments (i.e., end groups) per polystyrene molecule. In other words, termination is exclusively by coupling.

2-8 Plot (1/ $\left.X_{n}\right)$ vs. R_{p} according to

$$
1 / \mathrm{X}_{\mathrm{n}}=\left(\mathrm{k}_{\mathrm{t}} \mathrm{R}_{\mathrm{p}}\right) /\left(\mathrm{k}_{\mathrm{p}}^{2}[\mathrm{M}]^{2}\right)+\mathrm{C}_{\mathrm{M}}+\mathrm{C}_{\mathrm{I}}[\mathrm{II}] /[\mathrm{M}]
$$

$R p^{* 10 \wedge 6}$	$X n$	$(1 / X n) * 10^{\wedge} 4$
5	8350	1.2
10	5550	1.8
20	3330	3
50	1317	7.6
100	592	16.9
150	458	27

The plot is linear at low R_{p} (i.e., the first three points). $\mathrm{C}_{\mathrm{M}}=$ intercept $=5.97 * 10^{-}$ 5.

Slope $=k_{t} /\left(k_{p}^{2}[M]^{2}=12.6\right.$

$$
\begin{aligned}
& \mathrm{k}_{\mathrm{p}}^{2} / \mathrm{k}_{\mathrm{t}}=1 /\left[1.26 \times 10^{-2}(8.3)^{2}=1.15 \times 10^{-3}\right. \\
& \mathrm{k}_{\mathrm{p}} / \mathrm{k}_{\mathrm{t}}^{1 / 2}=\left(1.15 \times 10^{-3}\right)^{1 / 2}=3.4 \times 10^{-2} \mathrm{~L}^{1 / 2} \mathrm{~mol}^{-1 / 2} \mathrm{~s}^{-1 / 2} \\
& \mathrm{R}_{\mathrm{p}}=\left(\mathrm{k}_{\mathrm{p}}[\mathrm{M}] / \mathrm{k}_{\mathrm{t}}^{1 / 2}\right)\left(\mathrm{f} \mathrm{k}_{\mathrm{d}}[\mathrm{I}]^{1 / 2}=4.0 \times 10^{-4}[\mathrm{I}]^{1 / 2}\right. \\
& \mathrm{f}_{\mathrm{d}}=\left(\left[4.0 \times 10^{-4}\right] / \mathrm{k}_{\mathrm{p}} / \mathrm{k}_{\mathrm{t}}^{1 / 2}[\mathrm{M}]\right)^{2}=\left(\left[4.0 \times 10^{-4}\right] / 3.4 \times 10^{-2}(8.3)\right)^{2} \\
& =2.0 \times 10^{-6} \mathrm{~s}^{-1}
\end{aligned}
$$

Transfer to initiator isimportant since the $1 / X_{n}$ vs. R_{p} plot is not linear at higher R_{p} values. The C_{I} value can be obtained from the slope of the plot $\left[\left(1 / X_{n}\right)-\right.$ $\left.C_{M}\right]\left(1 / R_{p}\right)$ vs. R_{p}.

