新闻动态
通知公告
Johns Hopkins University 崔宏刚教授学术报告(2016-07-21)
发布人: 发布时间:2016-07-20 浏览次数:417
 
美国 The Johns Hopkins University 的 崔宏刚教授将于明日到访科大并做学术报告,报告安排如下:

报告题目:One-Component Nanomedicine
报告时间:2016年7月21日(周四)下午2:00
报告地点:环资楼939会议室
 
 

One-Component Nanomedicine

Honggang Cui, Assistant Professor

Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, and Department of Oncology, School of Medicine, The Johns Hopkins University

 

The creation of vehicles for the effective delivery of hydrophobic anticancer drugs to tumor sites has garnered major attention in cancer chemotherapies for several decades. Current approaches focus on the use of nanosized carriers, whereby the drug’s pharmacokinetic properties and biodistribution profiles are manipulated by encapsulation within, or by conjugation to the carrier. These carrier-based nanomedicines are inherently multicomponent systems that contain well-defined nanostructures as the delivery vehicle, one or more active pharmaceutical ingredients (APIs) as the therapeutic agent, and sometimes stealth and/or bioactive moieties to prolong circulation and to facilitate preferential accumulation at target sites. In most cases, each component is developed individually, and then combined to form a nanomedicine through a series of formulation procedures and conjugation methods. Although many of these nano-formulated medicines have shown much improved in vivo efficacy relative to that of the free drugs in animal models, further optimization of these nanomedicines to achieve the desired pharmacokinetic profile has proven challenging due to the interdependence of each individual component. This difficulty in improving and optimizing nanomedicine formulations is regarded as one of the major hurdles for the development of clinically useful nanomedicines for more effective cancer treatments. One possible solution could be to blur the line between the carrier and the drug by optimizing the nanomedicine construct as one integral component. In this presentation, I will detail our rational design of monodisperse, amphiphilic anticancer drugs—which we term drug amphiphiles (DAs)—that can spontaneously associate into discrete, stable supramolecular nanostructures with a high and fixed drug loading. These drug-made nanostructures are essentially one-component nanomedicines (OCNs) because they contain only one type of chemical substance. Depending on the number and type of the drug in the molecular design, the resulting nanostructures could assume various morphologies, such as nanofibers, nanotubes or toroids. Therefore, through molecular design of the building units, one could potentially gain control over the structural features and physicochemical properties of the resulting nanomedicine. Our results also suggest that formation of nanostructures provides protection for both the drug and the biodegradable linker from the external environment and thus offers a mechanism for controlled release.

 

Brief Biosketch
Honggang Cui received a Bachelor’s degree in Polymer Materials Science and Engineering from the Beijing University of Chemical Technology in 1999, a Master’s degree in Materialogy/Chemical Engineering from Tsinghua University in 2002, and a PhD degree in Materials Science and Engineering from the University of Delaware in 2007. He was a Postdoctoral Fellow between 2007 and 2010 in the department of Materials Science and Engineering and the Institute for BioNanotechnology in Medicine at Northwestern University. He joined the Chemical and Biomolecular Engineering Department at the Johns Hopkins University as Assistant Professor in 2010. He holds joint appointments in the Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, and the Center for Nanomedicine of Wilmer Eye Institute at the Johns Hopkins University School of Medicine. He is currently running a fully equipped lab for nanoparticle fabrication, peptide synthesis and purification, and cell culture, with the aims of developing peptide-based supramolecular nanomaterials for targeted drug delivery, tumor imaging and diagnosis, and tumor microenvironment mimicking. He is a recipient of the W. W. Smith Charitable Trust Basic Medical Research Grant in Cancer (2012), the NSF CAREER Award (2013), and the 3M Non-Tenured Faculty Award (2015).